Optimal Path Planning in Complex Cost Spaces With Sampling-Based Algorithms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Sampling-Based Approaches to Optimal Path Planning in Complex Cost Spaces

Sampling-based algorithms for path planning have achieved great success during the last 15 years, thanks to their ability to efficiently solve complex high-dimensional problems. However, standard versions of these algorithms cannot guarantee optimality or even high-quality for the produced paths. In recent years, variants of these methods, taking cost criteria into account during the exploratio...

متن کامل

Sampling-based algorithms for optimal path planning problems

Sampling-based motion planning received increasing attention during the last decade. In particular, some of the leading paradigms, such the Probabilistic RoadMap (PRM) and the Rapidly-exploring Random Tree (RRT) algorithms, have been demonstrated on several robotic platforms, and found applications well outside the robotics domain. However, a large portion of this research effort has been limit...

متن کامل

qfd planning with cost consideration in fuzzy environment

در عصر حاضر که رقابت بین سازمان ها بسیار گسترش یافته است، مطالعه و طرحریزی سیستم های تولیدی و خدماتی به منظور بهینه سازی عملکرد آنها اجتناب ناپذیر می باشد. بخش عمده ای از رقابت پذیری سازمان ها نتیجه رضایتمندی مشتریان آنها است. میزان موفقیت سازمان های امروزی به تلاش آنها در جهت شناسایی خواسته ها و نیازهای مشتریان و ارضای این نیازها بستگی دارد. از طرفی کوتاه کردن زمان ارائه محصول/خدمات به مشتریان...

15 صفحه اول

Sampling-based algorithms for optimal motion planning

During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a functio...

متن کامل

Tunable-Risk Sampling-Based Path Planning Using a Cost Hierarchy

We propose a new sampling-based path planning algorithm, the Optimal Minimum Risk Rapidly-Exploring Random Tree (MR-RRT*), that plans minimum risk paths in accordance with primary and secondary cost criteria. The primary cost criterion is a user-defined measure of accumulated risk, which may represent proximity to obstacles, exposure to threats, or similar. Risk is only penalized in areas of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automation Science and Engineering

سال: 2016

ISSN: 1545-5955,1558-3783

DOI: 10.1109/tase.2015.2487881